9 x^2 - 25 x^4= 0; 9x^2 ( 1 - 25x^4 / 9) = 0; (3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0; x1 = 0; Четный корень, так как он повторяется x2 = - 2,5; x3 = 2,5. Теперь методом интервалов определим знаки производной y' + - четн - + - 2,5 02,5x y возр убыв убыв возр. max min Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4; значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак. Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус. У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется
Х - скорость первого автомобиля. L - расстояние между пунктами. (Х+22) - скорость 2 автом. на втором участке. Тогда с учетом условия: L/Х - время движения 1 автомобиля 0,5L/33+0,5L/(Х+22) - время движения 2 астом. По условию они равны. L/Х =0,5L/33+0,5L/(Х+22) 1/Х=1/66+1/(2Х+44). Умножаем обе части на 66*Х*(Х+22) и избавляемся от знаменателя. Имеем: 66*(Х+22)=Х*(Х+22)+33*Х. Раскрываем скобки и переносим все в правую часть. Х^2+22Х+33Х-66Х-1452=0 (Х^2 - это Х в квадрате) Х^2-11Х-1452=0. Решаем квадратное уравнение Х1= 11/2+кор. квадр из [(11/2)^2+1452]=44 (км/час.) Х2=11/2-кор. квадр из [(11/2)^2+1452]<0 - не имеет смысла
смотри тут
Объяснение: