Нули функции (-5; 0) (-1; 0) (4; 0) (10; 0)
У>0 при х∈(-5, -1) и при х∈(4, 10)
Объяснение:
а)Нули функции это точки пересечения графиком оси Ох, где у ВСЕГДА равен нулю.
Таких точек здесь 4, координаты: (-5; 0) (-1; 0) (4; 0) (10; 0)
б)Если заменить слово "аргумент" на х, а "функция" на у, то понятно, что нужно определить, при каких значениях х у>0.
На графике ясно видны эти отрезки, где функция выше оси Ох.
Таких отрезков 2: от -5 до -1 и от 4 до 10.
У>0 при х∈(-5, -1) и при х∈(4, 10)
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
2х²-8х-4-6=0
2х²-8х-10=0
х²-4х-5=0
D=b²-4ac=16+20=36=6²
x₁=(4+6)/2=5
x₂=(4-6)/2=-1