М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mariana20021
mariana20021
10.02.2022 16:04 •  Алгебра

Брошена игральная кость. какова вероятность, что выпадет или "3", или "4"?

👇
Ответ:
goncharovkava
goncharovkava
10.02.2022
Брошена игральная кость.
Общее число событий равно 6 ({"1", "2", "3", "4", "5", "6"}).
Вероятность выпадения "3" равна 1/6 (один из шести возможных случаев).
Вероятность выпадения "4" равна 1/6 (один из шести возможных случаев).
Логическую связка "ИЛИ" заменяем сложением.
Получаем: 1/6 + 1/6 = 2/6 = 1/3
Итак, вероятность нашего  события Р=1/3
4,6(8 оценок)
Открыть все ответы
Ответ:
yaremhykv04
yaremhykv04
10.02.2022
1.
Пусть с помидорами было х банок, тогда с огурцами - 2х банок
(2х-4):(х-6)=3:1
Применяем основное свойство пропорции: произведение крайних членов равно произведению средних.
2х-4=3(х-6)
2х-4=3х-18
2х-3х=4-18
-х=-14
х=14
ответ. 14 банок с помидорами и 28 банок с огурцами было.

2.Пусть  х людей было на регистрации и у машин
Предложение "если в каждую машину сядет по три гостя, то двоим не хватит места" дает возможность составить первое уравнение:
3у+2=х
Предложение "если по четыре,  то три места останутся свободными" дает возможность составить второе уравнение:
4у-3=х
получаем систему
\left \{ {{3y+2=x} \atop {4y-3=x}} \right. \Rightarrow \left \{ {{3y+2=x} \atop {4y-3=3y+2}} \right. \Rightarrow \left \{ {{3y+2=x} \atop {4y-3y=3+2}} \right. \Rightarrow \left \{ {{3y+2=x} \atop {y=5}} \right. \Rightarrow \left \{ {{3\cdot 5+2=x} \atop {y=5}} \right.
\Rightarrow \left \{ {{x=17} \atop {y=5}} \right.
ответ. 5 машин и 17 приглашенных
4,4(34 оценок)
Ответ:
timirshan
timirshan
10.02.2022
1)
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0

a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk,  k∈Z

b)  2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk,  k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk,  k∈Z

ответ: 2πk,  k∈Z;
            2*(-1)^k*arcsin(2/3)+2πk, k∈Z.

2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk,  k∈Z
x=(-1)^k*(π/42)+(π/7)*k,  k∈Z

ответ: (-1)^k*(π/42)+(π/7)*k,  k∈Z.

3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
3sin2*( \frac{x}{2} )+4cos2*( \frac{x}{2} )=0 \\ \\ 
3*2sin( \frac{x}{2} )cos( \frac{x}{2} )+4(cos^2( \frac{x}{2} )-sin^2( \frac{x}{2} ))=0 \\ \\ 
-4sin^2( \frac{x}{2} )+6sin( \frac{x}{2} )cos( \frac{x}{2} )+4cos^2( \frac{x}{2} )=0 \\ \\ 
2sin^2( \frac{x}{2} )-3sin( \frac{x}{2} )cos( \frac{x}{2} )+2cos^2( \frac{x}{2} )=0 \\ \\ 
 \frac{2sin^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}- \frac{3sin( \frac{x}{2} )cos( \frac{x}{2} )}{cos^2( \frac{x}{2} )}+ \frac{2cos^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}=0
2tg^2( \frac{x}{2} )-3tg( \frac{x}{2} )-2=0 \\ \\ 
y=tg( \frac{x}{2} ) \\ \\ 
2y^2-3y-2=0 \\ 
D=9+4*2*2=25 \\ 
y_{1} =\frac{3-5}{4}=- \frac{2}{4}=- \frac{1}{2} \\ \\ 
y_{2}= \frac{3+5}{4}=2

a) При у=-1/2
tg( \frac{x}{2} )=- \frac{1}{2} \\ 
 \frac{x}{2}=-arctg \frac{1}{2} + \pi k \\ \\ 
x=-2arctg \frac{1}{2}+2 \pi k,
k∈Z;

b)  При у=2
tg( \frac{x}{2} )=2 \\ 
 \frac{x}{2} =arctg2+ \pi k \\ \\ 
x=2arctg2+2 \pi k,
k∈Z.

ответ: -2arctg \frac{1}{2}+2 \pi k,k∈Z;
             2arctg2+2 \pi k,k∈Z.
4,8(70 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ