1.
а) 3b+(5a–7b) = 3b+5a–7b = 5a–4b
б) –(8c–4) +4 = –8c+4+4 = 8–8c
в) (2+3x) +(7x–2) = 2+3x+7x–2 = 10x
г) 3(8m–4)+6m = 3×8m–3×4+6m=24m–12+6m=30m–12
д) 15–5(1–a)–6a = 15–5–5a–6a= 10–11a
е) (2a–7y)–(5a–7) = 2a–7y–5a+7 = –3a–7y±7
ж) 14b–(15b+y)–(y+10b) = 14b–15b–y–y–10b = –11b–2y
з) 7(5a+8)–11a–58 = 7×5a+7×8–11a–58 = 35a+56–11a–58 = 24a–2
и) 9x+3(15–8x)–35 = 9x+3×15–3×8x–35 = 9x+45–24x–35 = 10–15x
к) 33–8(11b–1) –2b = 33–8×11b–8–2b = 33–88b–8–2b = 25–90b
2.
а) 0,7b+0,3(b–5) = 0,7b+0,3b–0,3×5 = b–1,5 = –0,81–1,5 = –2,31
б) (y–7)–(14–y) = y–7–14+y = 2y–21 = –0,6–21= –21,6
Объяснение:
Алгебра мой конёк)
Надеюсь
Уравнение параболы y=ax^2+bx+c
Так как парабола проходит через точку А(8;-2), то
-2=64а+8b+c (1)
Координаты вершины параболы (2;4), через неё парабола тоже, логично, проходит, поэтому
4=4а+2b+c (2)
А также абсцисса вершины параболы определяется по формуле
x=-b/2a => 2=-b/2a, 4a=-b,
4a+b=0 (3)
Работаем с выражениями (1), (2) и (3):
(1-2) -6=60а+6b; 36a+6*(4a+b)=-6;
Т.к. 4a-b=0, то 36a=-6; a=-1/6
(3) 4a=-b; 2/3=b
Подставляем найденные значения а и b в выражение (2)
4=-4/6 + 4/6 + с, с=4
Поэтому искомое уравнение параболы
ответ: - 1/6 x^2 + 2/3 x + 4
100000 руб * 30 дней = 3 000 000 рублей (3 миллиона)
считаем сколько отдал богач
1=2^0 - 1-й день
2=2^1 - 2-день
///
2^29 30-й день
видим геометрическую прогрессию
b1=1
b30=2^29
q=b2/b1=2
S30=b1(q^30-1)/(q-1)=1*(2^30-1)/1=2^30-1=1 073 741 824 - 1 = 1 073 741 823 копеек
1 рубль=100 копеек
1 073 741 823 копеек = 10 737 418 . 23 (почти 11 миллионов)
Богач переплатил 7 737 418 . 23