М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ПоЛИнА10571
ПоЛИнА10571
29.05.2023 15:25 •  Алгебра

Решить. а) (x-3)^2-10|x-3|+25=0 б) x^3-|x|=0 в) |x|-x-|x|•x=0 г) |x|•x-3|x|-x+3=0 д) x^2-x+1=|x|^0 p.s. ^-степень; •-знак умножения; | | - модуль

👇
Ответ:
stoun2018
stoun2018
29.05.2023
А) (x-3)^2-10|x-3|+25=0
x>=3
x^2+9-6x-10x+30+25=0
x^2-16x+64=0
(x-8)^2=0 x=8
x<3
x^2+9-6x+10x-30+25=0
x^2+4x+4=0
(x+2)^2=0 x=-2
ответ х=-2 х=8
Б) x^3-|x|=0
x<0 x^3+x=0 x=0 x^2+1=0
x>=0 x^3-x=0 x=0 x^2=1 x=+-1
отв. х=0 х=1
В) |x|-x-|x|•x=0
x>=0 x-x-x^2=0 x=0  x<0 -x-x+x^2=0  x^2-2x=0 x=0 x=2
ответ х=0
Г) |x|•x-3|x|-x+3=0
x>=0 x^2-3x-x+3=0 x^2-4x+3=0 x1=3 x2=1
x<0 -x^2+3x-x+3=0 -x^2+2x+3=0 x^2-2x-3=0  x1=3 x2=-1
отв. х=-1 х=3 х=1
Д) x^2-x+1=|x|^0 
х^2-x=0
x=0 x=1 по области определения.
ответ х=1
4,5(79 оценок)
Открыть все ответы
Ответ:
катерина424
катерина424
29.05.2023
Решение

Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/  
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
 Решим систему:
/х + /у = / ,
 (/) х + (/ ) у = .

  + = ,
+ = ;

 у = − , ;
+ * ( − , ) = *( − , )

 у = − , ;
, ² − + = ;

у = − , ;
² − + = ;

² − + = ;
=  , у =
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней

4,8(87 оценок)
Ответ:
lis316721
lis316721
29.05.2023
Что такое подобные одночлены?

Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2;      31 и 45;      a2bx4 и 1,4a2bx4;      100y3и 100y3

Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.

Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0

Эти действия называются приведением подобных одночленов.

Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x

То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2

4,8(1 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ