Обозначим скорость теплохода в стоячей воде х км/ч. тогда его скорость по течению х+2 км/ч. На движение по течению он потратил 100/(х+2). А его скорость против течения х-2 км/ч. На движение против течения он потратил 64/(х-2). Получаем 100(x-2)+64(x+2)=9(x+2)(x-2) 100x-200+64x+128=9(x²-4) 164x-72=9x²-36 9x²-36-164x+72=0 9x²-164x+36=0 D=164²-4*9*36=25600 √D=160 x₁=(164-160)/18=4/18=2/9 - отбрасываем, так как при движении с такой скоростью теплоход не сможет плыть против течения x₂=(164+160)/18=324/18=18 ответ: скорость теплохода в стоячей воде 18 км/ч
Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3