Данное выражение должно делиться на 10^7 = 2^7 * 5^7, то есть кратным 2^7 и 5^7 a должно быть чётным Пусть а=2n a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)= =2^5(n+4)(n+8)(n+12)(n+16) > не кратно 2^7, a=2n не подходит. Пусть а=4n 4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7
произведение (n+2)(n+4)(n+6)(n+8) должно быть кратно 5^7, все сомножители дают разные остатки от деления на 5, поэтому среди них только один должен делиться на 5^7. наименьшее n - в множителе (n+8) ---> n=5^7 -8=78125-8=78117
Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.
вот и все