Общий вид комплексного числа следующее z=r(cos phi+isin phi). Для этого сначала найдем модуль комплексного числа
|z|=sqrt{(-1)^2+1^2}=sqrt{2}
z=-1+i=|z|(-frac{1}{|z|}+frac{1}{|z|}i)=sqrt{2}(-frac{1}{sqrt{2}}+frac{1}{sqrt{2}}i)
cos phi=-frac{1}{sqrt{2}}\ sinphi=frac{1}{sqrt{2}}
Косинус отрицателен, а синус положителен, значит это вторая четверть и угол нужно найти именно во второй четверти, это будет phi=frac{3pi}{4}
z=-1+i=sqrt{2}(-frac{1}{sqrt{2}}+frac{1}{sqrt{2}}i)=sqrt{2}(cosfrac{3pi}{4}+isinfrac{3pi}{4})=sqrt{2}e^{ifrac{3pi}{4}}
x(a+b)-(b-a)=(a+b)x
(ax+ay)-(x+y)=a(x+y)
(ax+ay)-(2bx-2by)= a(x+y)-2b(x+y)=(a-2b)(x+y)