М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
eva70218
eva70218
21.11.2021 06:36 •  Алгебра

Решить sinx=1/2 на отрезке от 0 до 2п

👇
Ответ:
Almirgiv
Almirgiv
21.11.2021
Sinx = 1/2
x = (- 1)^n * arcSin1/2 + Пn, n э z
x = (- 1)^n * П/6 + Пn, n э z
Решения уравнения на промежутке (0; 2П) будут П/6, 5П/6, 7П/6, 11П/6
4,6(87 оценок)
Открыть все ответы
Ответ:
Ladinikit
Ladinikit
21.11.2021

Система уравнений имеет два решения:

1)[(1-2√3/2 (≈ -1,5);   7-4√3/2 (≈2,1)];

2)[1+2√3/2 (≈3,5);   7+4√3/2 (≈11,9)].

Объяснение:

Определите графически количество решение системы уравнений:

y=x²

y-2x-5=0

Преобразуем второе уравнение в уравнение функции:

y-2x-5=0

у=2х+5

Построим графики функций. Первый - парабола с вершиной в начале координат, ветви направлены вверх; второй - прямая линия.

Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.

                    y=x²                                         у=2х+5

                                    Таблицы:

 х   -3    -2    -1    0     1    2    3                  х   -1    0    1

 у    9     4     1     0     1    4    9                  у   3    5    7

На графике прямая у=2х+5 пересекает параболу в двух точках, но значения очень приблизительные.

Определим координаты этих точек расчётами.

Приравняем правые части уравнений (левые равны) и вычислим х:

x²=2х+5

x²-2х-5=0, квадратное уравнение, ищем корни:

х₁,₂=(2±√4+20)/2

х₁,₂=(2±√24)/2

х₁,₂=(2±√16*3/2)/2

х₁,₂=(2±4√3/2)/2

х₁=1-2√3/2 (≈ -1,5)

х₂=1+2√3/2 (≈3,5)

Вычислим значения у координат точек пересечения:

у=2х+5

у₁=2(1-2√3/2)+5

у₁=2-4√3/2+5

у₁=7-4√3/2 (≈2,1)

у₂=2(1+2√3/2)+5

у₂=2+4√3/2+5

у₂=7+4√3/2 (≈11,9)

Координаты первой точки пересечения графиков: [(1-2√3/2 (≈ -1,5);        7-4√3/2 (≈2,1)];

Координаты второй точки пересечения графиков: [1+2√3/2 (≈3,5);    7+4√3/2 (≈11,9)]

4,4(29 оценок)
Ответ:
silinskay
silinskay
21.11.2021
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}},

где \underbrace{99...9}=k, a \underbrace{00...0}=m

Рассмотрим пример:

Дана бесконечная периодическая дробь 2,(25)

Итак, по формуле:

y - целая часть. У нас она равна 2

k- - количество цифр в периоде. У нас их 2

m- количество цифр до периода. У нас их 0

a-  все цифры, включая период, в виде натурального числа. У нас это 25

b- все цифры без периода в виде натурального числа. Их нет.

Итак, получаем:

y=2\\
k=2\\
m=0\\
a=25\\
b=0

Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=2+ \frac{25-0}{99}=2 \frac{2\cdot99+25}{99}= \frac{223}{99}

Необходимо отметить, что  под k подставляется количество 9, а под m -количество нулей. У нас k=2, значит пишем две цифры 9, а m=0, значит, нулей не пишем вообще. Между  k\ u\ m не стоит знак умножения

*****************************************

0,41(6)

y=0\\
k=1\\
m=2\\
a=416\\
b=41

Подставляем:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=0+ \frac{416-41}{900}= \frac{375}{900}= \frac{375:75}{900:75} = \frac{5}{12}

***************************************

3,6(020)

y=3\\
k=3\\
m=1\\
a=6020\\
b=6


Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=3+ \frac{6020-6}{9990}= 3\frac{6014}{9990} = \frac{35984(:2)}{9990(:2)}= \frac{17992}{4995}
4,7(49 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ