В решении.
Объяснение:
1) (х - 4)/5 < (2х + 4)/9 + 9
Умножить все части неравенства на 45, чтобы избавиться от дробного выражения:
9*(х - 4) < 5*(2x + 4) + 45*9
9x - 36 < 10x + 20 + 405
9x - 10x < 425 + 36
-х < 461
x > -461
При х > -461 первое выражение меньше второго.
2) (х + 17)/5 = 3(х - 5)/4
Умножить все части уравнения на 20, чтобы избавиться от дробного выражения:
4*(х + 17) = 5*3(х - 5)
4х + 68 = 15х - 75
4х - 15х = -75 - 68
-11х = -143
х = -143/-11
х = 13.
При х = 13 первое выражение не больше второго (равно ему).
Объяснение:
1. 25х – 17 - 4х - 5 = -13х + 14 + 34х
приведем подобные слагаемые, получим: 21х - 22 = 21х + 14
перенесем х в одну сторону, числа в другую, получим: 0х = 36
при умножении на 0 любого числа получится всегда 0, тоесть равенство никогда не будет верным — корней нет
2. 10 - 4х + 3 = 9х – 2 - 6х + 9 - 7х + 6
приведем подобные слагаемые, получим: 13 - 4х = -4х + 13
перенесем х в одну сторону, числа в другую, получим: 0х = 0
при умножении любого числа на 0 всегда получится 0, тоесть равенство всегда будет верно, при любом значении х
3. возьмем ширину за х, тогда длина будет 2х, P участка = длине забора, длина забора = 6х; 6х = 120, х = 20м 2х = 40м
Если оба числа с минусом , мы их складываем , знак минус