Для начала нужно разложить на множители знаменатель третьей дроби. Разложив, получим (х-5)*(х-4). Далее выберем общий множитель. Он будет таким: (х-3)(х-4)(х-5). Теперь сократим знаменатели дробей на данный множитель. У нас останется: х-5 + х-4 + х-3 ≤1. Перенесем числа -5, -4, -3 в другую часть неравенства, соответственно меняя знак на противоположный. Получится: х + х + х ≤ 1 + 5 + 4 + 3. Сложим числа и иксы:
3х ≤ 13. Разделим обе части на 3:
х ≤ четыре целых одна третья. Теперь осталось записать данное выражение в числовом промежутке: (-∞; четыре целых одна третья].
Решено.
а) Строим таблицу абсолютных и относительных частот
Кол-во книг 0 1 2 3 4 5 6
Кол-во школьников
(абсолютная частота) 2 4 3 5 2 3 1 20
Относит. частота 0,1 0,2 0,15 0,25 0,1 0,15 0,05 1
Комментарий к составлению таблицы:
Известно, что количество школьников равно сумме абсолютных частот, т.е. 20 (2+4+3+5+2+3+1=20)
Чтобы найти относительную частоту, надо абсолютную частоту разделить на сумму абсолютных частот
2/20=0,1; 4/20=0,2; 3/20=0,15; 5/20\0,25; 1/20=0,05
б) Самое распространенное число прочитанных книг равно 3 (т.к. по 3 книги прочитали 5 школьников).
в) Проверяем таблицу относительных частот на непротиворечивость. Для этого складываем все значения относительных частот и проверяем, равна ли их сумма числу 1.
0,1+0,2+0,15+0,25+0,1+0,15+0,05 = 1 (верно)
Вывод: Таблица относительных частот непротиворечива.
67²-57²= (67-57)*(67+57)= 10*124= 1240