Это вид уравнения окружности, который можно использовать для определения центра и радиуса окружности.
(
x
−
h
)
2
+
(
y
−
k
)
2
=
r
2
Сопоставьте параметры окружности со значениями в ее каноническом виде. Переменная
r
представляет радиус окружности,
h
представляет сдвиг по оси X от начала координат, а
k
представляет сдвиг по оси Y от начала координат.
r
=
2
h
=
5
k
=
−
1
Центр окружности находится в точке
(
h
,
k
)
.
Центр:
(
5
,
−
1
)
Эти величины представляют важные значения для построения графика и анализа окружности.
Центр:
(
5
,
−
1
)
Радиус:
2
Применим формулы сокращенного умножения:
а) (a + b)² = a² + 2·a·b + b²
б) (a - b)² = a² - 2·a·b + b²
в) (a + b)·(a - b) = a² - b²
1. (x–3)² – 2·x² = 9 – (x+1)²
x² – 6·x + 9 – 2·x² = 9 – (x² + 2·x + 1)
–6·x + 9 – x² – 9 = – x² – 2·x – 1
–6·x – x² + x² + 2·x = – 1
– 4·x = – 1
x = 1/4.
2. (x⁴ – 3)·(x⁴ + 3) – (x⁴ – 5)² = x⁸ – 9 – (x⁸ – 10·x⁴ + 25) =
= x⁸ – 9 – x⁸ + 10·x⁴ – 25 = 10·x⁴ – 34.
При x = 3
10·3⁴ – 34 = 10·81 – 34 = 810 – 34 = 776.
3. (3·a + 2·b)² · (3·a – 2·b)² = ((3·a + 2·b) · (3·a – 2·b))² =
= (9·a² – 4·b²)² = 81·a⁴ – 72·a²·b² + 16·b⁴.
у=0, тобто 0=0,8х+4
-0,8х=4
х=-5, звидси (-5;0).
З виссю Оу:
х=0, тобто у=0,8*0+4
у=4, звидси (0;4).
Видповидь: (-5;0) и (0;4).