1) 3a - 27/4a-36
в числителе выноси общий множитель 3 а в знаменателе 4
и будет 3(а - 9)/4(а - 9) и то что в скобках сокращаем (потому что оно одинаковое) = 3/4
2) 11(d+6)^8 / 88(d+6) = (d+ 6)^8/8
4) Приведи дроби x^2 / x^2−u2 и x−u / 7x+7u к общему знаменателю.
5. 7x^2 / 7(x+u)(x−u) и x^2−2xu+u^2 / 7(x+u)(x−u) (правильный)
5) 3x / x−11 и 8y / x+11
4. 3x^2+33x / x^2−121 и 8yx−88y / x^2−121 (правильный)
Сократите дробь 5m+an−5n−am / a^2−10a+25 до знаменателя 5−a
5m+an−5n−am / a^2−10a+25 = (5 - а)(m - n)/(5 - a)^2 = m - n/ 5 - a
В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
Дано:
P_{ABCD}=48 см
пусть AB=x, тогда BC=x+7
Решение:
по определению параллелограмма стороны попарно равны ⇒ AB=CD; BC=AD
⇒ P_{ABCD}=2(AB+BC)=2(x+x+7)=2(2x+7)=4x+14
⇒ 4x+14=48
4x=48-14
4x=34
x=8,5
AB=8,5 см
⇒ BC=AB+7=8,5+7=15,5
ответ: AB=8,5; BC=15,5