В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.
Разбираем случаи:
1) b = 1/2. Тогда при всех a должно быть так: Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.
2) b не равно 1/2. Квадратный трёхчлен должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.
Для этого надо построить графики функций, из которых состоит система, в одной системе координат, точки пересечения этих графиков будут решениями системы. 1) график - прямая линия, для построения нужны 2 точки. x=0; y=6,5; (0;6,5) y=0; x=2,6 (2,6;0) строим график(см. вложение, красным цветом) 2) график - прямая линия, для построения нужны 2 точки. x=0; y=-3; (0;-3) y=0; x=1,5; (1,5;0) строим график(см. вложение,синим цветом) как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
4(х² - 5) = 0 |÷4
x² - (√5)² = 0
( х - √5)(х+√5) = 0
произведение = 0 , если один из множителей =0
х - √5 =0
x₁ = √5
x +√5 = 0
x₂ = - √5
6x² + 12 =0
6(x² + 2) = 0 |÷6
x² + 2 =0
x² = - 2 вещественных корней нет, только комплексные
х₁ = i√2
x₂ =- i√2