Как решаются такие уравнения.
Правило звучит таким образом.
В первую очередь нужно перенести в одну сторону от знака равенства все слагаемые, содержащие переменную, а все числовые слагаемые перенести в другую сторону от знака равенства.
Например, во втором 2) примере:
переносим 2х влево, а 4 вправо. При переносе через знак равно меняется знак слагаемого на противоположный.
То есть получаем:
9х + 2х = 48 - 4.
Вычисляем правую и левую части:
11х=44.
После этого находим х, делим правую и левую части уравнения на множитель при х, то есть на 11.
11х / 11 = 44 / 11
х = 4. Это ответ.
в 5) делаем аналогично:
переносим слагаемые с х в одну сторону, числа в другую:
в данном случае перенесем 1.3х вправо, чтобы знак у слагаемого с х был плюс:
6.8 + 2.7 = 0.6х + 1.3х
9.5 = 1.9х
Чтобы дальше решалось проще, умножим правую и левую части на 10 (удобно так избавляться от дробей)
9.5*10=1.9х*10
95 = 19х
Теперь делим правую и левую части на 19:
95/ 19 = 19х / 9
5 = х
х = 5
Развернуть уравнение можно в любой момент в процессе решения.
ответ: х = 5.
6) решается аналогично:
переносим слагаемые с переменным влево, числовые слагаемые вправо:
4/9 * х - 1/6 * х = 9 - 14 = -5, сразу вычисляем правую часть
Для упрощения вычисления умножим правую и левую часть уравнения на 18 - наименьшее число такое, умножение на которое позволит избавиться от дробей в левой части:
4/9 * х * 18 - 1/6 * х * 18 = -5 * 18
4*18/9 * х - 1*18/6 * х = -80
18 делим на 9, получаем 2; 18 делим на 6, получаем 3.
4*2*х - 1*3*х = -80
8х - 3х = -80
5х = -80
Делим правую и левую части на 5:
5х/5 = -80/5
х = -18
ответ: х = -18
Построим гипотезы:
H1 - изделие изготовлено на первом заводе.
H2 - изделие изготовлено на втором заводе.
Нам важно, чтобы изделие было бракованным, поэтому интересующий нас исход A - выбранное изделие браковано.
Т.к. по условию объём продукции на втором заводе в 1,5 раза превышает объём продукции на первом, то получаем следующее:
V2 = 1,5*V1
V = V1 + V2 = V1 + 1,5*V1 = 2,5V1
Мы нашли общий объём продукции, поэтому теперь легко можем найти P(H1) и P(H2) - вероятность того, что выбранное изделие изготовлено на первом заводе, и вероятность того, что оно изготовлено на втором заводе, соответственно:
P(H1) = V1 / 2,5*V1 = 0,4
P(H2) = 1 - 0,4 = 0,6 (т.к. других вариантов нет, то можно вычислять так, а не делить 1,5*V1 на 2,5*V1)
P(A|H1) - вероятность того, что выбранное изделие от первого поставщика имеет брак - нам дана, как и вероятность P(A|H2):
P(A|H1) = 0,18
P(A|H2) = 0,08
Тогда можно найти полную вероятность брака P(A) по формуле:
P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) = 0,4*0,18 + 0,6*0,08 = 0,12
По формуле Байеса находим вероятность того, что бракованное изделие изготовлено на первом заводе:
P(H1|A) = P(H1)*P(A|H1)/P(A) = 0,4*0,18/0,12 = 0,006