М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
jamal55
jamal55
22.04.2022 20:25 •  Алгебра

Найдите наибольший общий делать (нод) для чисел 144265 и 7056

👇
Ответ:
yuluamelyasova
yuluamelyasova
22.04.2022
Решение:
Разложим числа на простые множители.

14426552885311262343616170562352821764288224413147349777
Т.е. мы получили, что:
144265 = 5•11•43•61
7056 = 2•2•2•2•3•3•7•7

Находим общие множители (общих множителей нет, т.е. числа 144265 и 7056 взаимно-простые).
НОД(144265, 7056) = 1 

Чтобы найти НОК объединяем множители и перемножаем их:
НОК(144265, 7056) = 2•2•2•2•3•3•5•7•7•11•43•61 = 1017933840

Или можно воспользоваться формулой:
НОК(a, b) = (a•b)/НОД(a, b)
НОК(144265, 7056) = (144265•7056)/НОД(144265, 7056) = 1017933840ответ:
НОД(144265, 7056) = 1
НОК(144265, 7056) = 1017933840
4,6(9 оценок)
Ответ:
Наибольший общий делитель НОД (144265; 7056) = 1
4,5(63 оценок)
Открыть все ответы
Ответ:
bodnarhuk83
bodnarhuk83
22.04.2022
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях.
2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не  принадлежит графику функции y=x^2.
4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.

Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. 
Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти.
Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции. 
Известно, что точка а (a; b) принадлежит функции y=x^2 принадлежит ли графику этой функции точка b (
Известно, что точка а (a; b) принадлежит функции y=x^2 принадлежит ли графику этой функции точка b (
4,4(59 оценок)
Ответ:
sergantmomo
sergantmomo
22.04.2022
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.

2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) =  (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решить 1) записать уравнение касатальной к графику функции f(x)=4x-sinx+1 в точке x0=0 2) найти знач
4,5(70 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ