Составить уравнение линии, для каждой точки которой ее расстояние до точки a(x; y) равно расстоянию до прямой y = b. полученное уравнение к простейшему виду и построить кривую. a (2; -1), b=1 , нужно с чертежом
Пусть М(х;у) — текущая точка искомой кривой. Опустим из точки М перпендикуляр МВ на прямую у = -1 (см. приложение). Тогда В (х; -1). Так как МА=МВ, то Возведём обе части в квадрат.
Раскроем скобки с переменной у:
Получаем уравнение параболы:
Полученное уравнение определяет параболу с вершиной в точке О*(2; 0). Для приведения уравнения параболы к простейшему (каноническому) виду положим x – 2 = X*, y = Y*. Тогда в системе координат Х*0*У* уравнение параболы принимает следующий вид: У*= (1/4)(Х*)².
Стоимость доставки М = х + п*у, где х - стоимость доставки к дому, у - стоимость доставки на 1 этаж, п - количество этажей Тогда: М₄ = 890 = х + 4у М₇ = 980 = х + 7у решаем систему
х = 980 - 7у - подставляем в 1-е уравнение: 980 - 7у + 4 у = 890 90 = 3у у = 30 тогда х = 980 - у = 980 - 210 = 770
Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант: Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Так как МА=МВ, то
Возведём обе части в квадрат.
Раскроем скобки с переменной у:
Получаем уравнение параболы:
Полученное уравнение определяет параболу с вершиной в точке О*(2; 0). Для приведения уравнения параболы к простейшему (каноническому) виду положим x – 2 = X*, y = Y*.
Тогда в системе координат Х*0*У* уравнение параболы принимает следующий вид: У*= (1/4)(Х*)².