найдём точку пересечения прямых
4y=3x ⇒ 12y=9x ⇒ 5x+12y=5x+9x=14x ⇒ 14x=10 ⇒ x = 5/7 ⇒ 4y=3·5/7=15/7 ⇒ y=15/28
найдём векторы нормали
-3x+4y=0 ⇒ n₁(-3;4)
5x+12y-10=0 ⇒ n₂(5;12)
Проверим, острый ли угол между n₁ и n₂ (равносильно n₁·n₂ > 0)
n₁·n₂=-3·5+4·12=-15+48 > 0
Находим единичные вектора нормали
n₁'=n₁/|n₁|=(-3;4)/√(3²+4²)=(-3/5;4/5)
n₂'=n₂/|n₂|=(5;12)/√(5²+12²)=(5/13;12/13)
Находим вектор нормали к биссектрисе острого угла между прямыми
n₃=n₁'+n₂'=(-14/65;112/65)
Другим вектором нормали будет n₃'=65/14 n₃=(-1;8)
Составляем уравнение биссектрисы по точке (5/7;15/28) и вектору нормали n₃
n₃'·(x,y)=n₃'·(5/7;15/28) ⇒ -x + 8y = -5/7 + 8 ·15/28 = 25 / 7, или
-7x + 56y = 25
другой возможный вариант решения, использовать тот факт, что любая точка биссектрисы равноудалена от двух данных прямых, и формулу расстояния от точки до прямой
|4y-3x|/√(4²+3²) = |5x+12y-10|/√(5²+12²)
13|4y-3x| = 5|5x+12y-10|
13(4y-3x) = ±5(5x+12y-10)
Один вариант знака даёт биссектрису острого угла, второй — биссектрису тупого угла, потом останется только разобраться, какой вариант к какой биссектрисе относится.
1. Выражение 2х²у³х³ - одночлен в стандартном виде.(-)
2. Выражение, представляющее собой сумму одночленов – многочлен.(+)
3.Одночлены с одинаковой буквенной частью – подобные одночлены. (+)
4.В выражении (5х) ³ число “3” - основание. (-)
5.Квадрат двучлена (а-2в) равен а²-4ав+4в² . (+)
6.Выражение (х²-у²) представляет собой разность квадратов. (+)
7. (х³+у³)- куб суммы. (-)
8. Уравнение х² -25=0 имеет два корня 5 и -5. (+)
9.Выражение 16х4у6 -это квадрат одночлена 8х²у³. (-)
2 вариант
1.Степень одночлена 2х²у³z³ равна 18. (-)
2. Многочлен- это выражение, представляющее собой сумму одночленов. (+)
3.В выражение *+ 14в+49 , * - это в2. (+)
4.Выражение -(-5х³) 2 равно 25х6 . (-)
5.Квадрат двучлена (9а6-2в³) равен 81а12-36а6в³+4в6 . (+)
6.Выражение (х-у) ³ представляет собой куб разности. (+)
7.Уравнение в2 +81 = 0 имеет два корня. (-)
8.Выражение (х+5) ² всегда больше или равно 0. (+)
9.Выражение 16х4у12 -это четвертая степень одночлена 4ху³. (
есть только ответы на 9 вопросов)
Объяснение: