2) 4y^2 - 9y+48=0 D = 81-768=- 687 действительных корней нет 1) 4y^2 - 25y + 100=0 D = 625-1600, D<0 действительных корней нет 3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби: (x+3)(x-2)=0 x+3=0 или x-2=0 x=-3 x=2 ответ: 2 (так как -3 не подходит по условию знаменателя) 4) Приведем к общему знаменателю: (16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0 x не равен 0, 3 и - 3 16(x^2-9)+x^2(x-6)-x^2(x+3)=0 16x^2-144+x^3-6x^2-x^3-3x^2=0 7x^2=144 x1=12/√7 x2=- 12/√7
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
D = 81-768=- 687
действительных корней нет
1) 4y^2 - 25y + 100=0
D = 625-1600, D<0 действительных корней нет
3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби:
(x+3)(x-2)=0
x+3=0 или x-2=0
x=-3 x=2
ответ: 2 (так как -3 не подходит по условию знаменателя)
4) Приведем к общему знаменателю:
(16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0
x не равен 0, 3 и - 3
16(x^2-9)+x^2(x-6)-x^2(x+3)=0
16x^2-144+x^3-6x^2-x^3-3x^2=0
7x^2=144
x1=12/√7
x2=- 12/√7