11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Задание №1. 1.(-1,5+4-2,5)(-6) -1.5+4=2.5 2.5-2.5=0 В первой скобке будет 0. 0 нельзя умножать на другое число, следовательно ответ:0
2. =0,2 0,25 Скобка первая: (0,2-0,25)=-0,05 Решим вторую скобку: -1,6-3,3=-4,9 -4,9+5=0,1 Делим первую на вторую: -0,05:0,1=-0,5 ответ: -0,5
Задание №2.
1. 2(х-1)=3(2х-1) Первая скобка: умножаем 2 на каждый множитель и получается: 2х-2= Тоже самое и со второй скобкой: 6х-1 Получается: 2х-2=6х-1 Все числа с "х" переносим в правую сторону, а обычные числа в левую. Получается: 2х-6х=2-1(Главное помнить,что при переносе числа через знак "равно" знак числа меняется на противоположный.) Решаем уравнение: 2х-6х=2-1 -4х=1 х= х=-0,25 ответ: -0,25
2. 3-5(х-1)=х-2 Раскрываем скобки: 3-5х+1=х-2 "х" переносим в права, а обычные числа в лево: -5х-х=-3-1-2 -6х=-6 х=6 ответ: 6
4. приравняем обе части к общему знаменателю( у 3 и 2 это 6): с "х" перенесем в права, обычные числа в лево: умножим крест - на - крест. получим: 0,5*6=-х*1 3=-х х=-3 ответ: -3
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).