М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
elf35
elf35
07.01.2021 17:35 •  Алгебра

Sin2*x-cos*3x+1 решить определенный интеграл (1; -1)

👇
Ответ:
[-1;1] ∫ (sin2x-cos3x+1) dx = 
= [-1;1]  (-1/2 cos2x - 1/3 sin3x +x)  = 
= -1/2 ( cos (2*1) - cos(2*(-1) ) - 1/3 ( sin(3*1) - sin(3*(-1) )  + 1 -(-1)  =
= -1/2 ( cos (2) - cos(-2) ) - 1/3 ( sin(3) - sin(-3) )  + 2  =
= -1/2 ( cos (2) - cos(2) ) - 1/3 ( sin(3) + sin(3) )  + 2  =
= -1/2 * 0 - 1/3 * 2sin(3) + 2  =
=  2/3 * (  3 - sin(3)  )
4,5(89 оценок)
Открыть все ответы
Ответ:
BrainSto
BrainSto
07.01.2021
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Ответ:
Kukushka2281337
Kukushka2281337
07.01.2021
2сos²x-1+cosx≥0 cosx=a 2a²+a-1≥0 d=1+8=9 a1=(-1-3)/4=-1      a2=(-1+3)/4=1/2             +                    -                        +                       -1                      1/2 a≤-1⇒cosx≤-1⇒x=π+2πn a≥1/2⇒cosx≥1/2⇒x∈[-π/3+2πn; π/3+2πn] ответ x=π+2πn и x∈[-π/3+2πn; π/3+2πn]
4,5(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ