Объяснение:
Выносим общий множитель √2*sinx за скобки
√2*sinx*(2-cosx)+cosx-2=0
Выносим знак минус за скобку
√2*sinx*(2-cosx)-(2-cosx)=0
Выносим за скобку общий множитель 2-cosx
(2-cosx)*(√2*sinx-1)=0
2-cosx=0 или √2*sinx-1=0
1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так
Дано:
A) x⁴ + x³ + 11x² + 6x - 12
B) x⁴ + x³ - 7x² - x + 6
C) x⁴ - x³ - x² + 7x - 6
D) x⁴ - x³ - 11x² + 6x - 8
Корни многочлена
x₁ = -1
x₂ = 1
x₃ = 2
x₄ = -3
Найти:
Выбрать многочлен с данными корнями
Многочлен А)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ + 11 · (-1)² + 6 · (-1) - 12 = 1 - 1 + 11 - 6 -12 = -7
Многочлен А) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен В)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ - 7 · (-1)² - (-1) + 6 = 1 - 1 - 7 + 1 + 6 =0
Продолжим проверку
Подставим корень x₂ = 1
1⁴ + 1³ - 7 · 1² - 1 + 6 = 1 + 1 - 7 - 1 + 6 = 0
Продолжим проверку
Подставим корень x₃ = 2
2⁴ + 2³ - 7 · 2² - 2 + 6 = 16 + 8 - 28 - 2 + 6 = 0
Проверим и последний корень
x₄ = -3
(-3)⁴ + (-3)³ - 7 · (-3)² - (-3) + 6 = 81 - 27 - 63 + 3 + 6 = 0
Многочлен В) подходит, так как его значение при ПРИ ВСЕХ КОРНЯХ равно нулю.
Многочлен С)
Подставим корень x₁ = -1
(-1)⁴ - (-1)³ - (-1)² + 7 · (-1) - 6 = 1 + 1 - 1 - 7 - 6 = -12
Многочлен С) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен D)
Подставим корень x₁ = -1
(-1)⁴ - (-1)³ - 11 · (-1)² + 6 · (-1) - 8 = 1 + 1 - 11 - 6 - 8 = -23
Многочлен D) не подходит, так как его значение при x₁ = -1 не равно нулю.
B) x⁴ + x³ - 7x² - x + 6
y=9x^2+2-2
-2 и +2 сокращаются
получаем
y=9x^2