Это все простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 Это 15 чисел, но каждое равно просто самому себе, потому что они простые и делятся только на 1 и на себя. 1 - это не простое число. Все составные числа больше, чем сумма их простых делителей. Например, делители 10 и 20: 2 и 5, 2+5 = 7. 34: 2 и 17, 2+17 = 19. Если считать 1 простым числом, тогда число только одно: 6 = 1+2+3 - это так называемое совершенное число. До 50 есть еще одно совершенное число 28 = 1+2+4+7+14, но у него не все делители - простые. ответ: если 1 - не простое число, то 15 чисел. Если 1 - простое число, то одно число 6.
Кажется, я уже решал подобную задачу { ax + y + z = 1 { x + ay + z = a { x + y + az = a^2 Умножаем 2 уравнение на -а и складываем с 1. Умножаем 3 уравнение на -1 и складываем со 2. { ax + y + z = 1 { 0x + (-a^2+1)y + (-a+1)z = -a^2+1 { 0x + (a-1)y + (1-a)z = -a^2+a Упрощаем { ax + y + z = 1 { -(a+1)(a-1)y - (a-1)z = -(a+1)(a-1) { (a-1)y - (a-1)z = -a(a-1) Если а = 1, то 2 и 3 уравнения обращаются в 0, остается 1 уравнение. x + y + z = 1 У него бесконечное множество решений, это нам не подходит. Значит, a =/= 1. Делим 2 и 3 уравнения на (a-1) { ax + y + z = 1 { -(a+1)y - z = -(a+1) { y - z = -a Выразим z через y { ax + y + z = 1 { -(a+1)y +(a+1) = z { y + a = z Уравниваем левые части 2 и 3 уравнений (a+1)(-y+1) = y + a -ay - y + a + 1 = y + a -ay - 2y + 1 = 0 1 = ay + 2y = y(a + 2) y = 1/(a + 2) При a = -2 у системы решений нет.
...