6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
Построение графика функции методом дифференциального исчисления
Существует построения графика функции, основанный на аналитическом исследовании функции. Исследование проводится по следующей примерной схеме:
1) выяснение области определения функции;
2) решается вопрос о четности или нечетности функции;
3) исследуется периодичность функции;
4) находят точки пересечения кривой с осями координат;
5) находят точки разрыва функции и определяют их характер;
6) проводят исследования на экстремум, находят экстремальные значения функции;
7) ищутся точки перегиба и интервалы выпуклости и вогнутости кривой;
8) отыскание асимптот кривой;
9) полученные результаты наносят на чертеж и получают график исследуемой функции.
Построить график без исследования функции (получить просто рисунок) можно с этого сервиса.
Объяснение:
9х²=9 х²=1 х₁=1 х₂=-1
9х²-9=0
х₁+х₂=0 х₁*х₂=-9/9=-1 х₁=1 х₂=-1
9х²-9=0 D=0+324=18²
х₁=(1+18)/18=1 х₂=(0-18)/18=-1