М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ffghh1gfdd
ffghh1gfdd
22.02.2021 20:16 •  Алгебра

Знайти усі значення параметра b, при яких рівняння має лише один корінь. (

👇
Ответ:
dinnaasv
dinnaasv
22.02.2021

1)D=(2b-1)²-4(b²-1)=0

4b²-4b+1-4b²+4=0

-4b+5=0

4b=5

b=5/4=1,25

2)b²-1=0

α)b=1 : (2-1)x+1=0, x+1=0, x=-1

β)b=-1: (-2-1)x+1=0, -3x+1=0,-3x=-1, x=1/3

Otvet: -1,1,5/4

4,7(10 оценок)
Ответ:
dianahohlova
dianahohlova
22.02.2021

D=(2b-1)^2-4(b^2-1)=4b^2-4b+1-4b^2+4=5-4b

Квадратное уравнение имеет один единственный корень, если D=0

5-4b=0 откуда b=1.25



Если b^2-1=0 откуда b=\pm1 то уравнение примет линейный вид, что будет иметь один корень



ОТВЕТ: 1.25; -1; 1.

4,7(68 оценок)
Открыть все ответы
Ответ:
innesa260778
innesa260778
22.02.2021

1.

a)

x² + 4x + 10 ≥ 0

Рассмотрим функцию у = x² + 4x + 10.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² + 4x + 10 = 0

D = 16 - 40 = - 24 < 0

нулей нет, значит график не пересекает ось Ох.

Схематически график изображен на рис. 1.

у > 0  при x ∈ (- ∞; + ∞)

ответ: 2) Решением неравенства является вся числовая прямая.

b)

- x² + 10x - 25 > 0       | · (- 1)

x² - 10x + 25 < 0

Рассмотрим функцию у = x² - 10x + 25.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² - 10x + 25 = 0

(x - 5)² = 0

x = 5

Схематически график изображен на рис. 2.

у < 0  при x ∈ {∅}

ответ: 1) Неравенство не имеет решений.

c)

x² + 3x + 2 ≤ 0

Рассмотрим функцию у = x² + 3x + 2.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² + 3x + 2 = 0

D = 9 - 8 = 1

x_{1}=\dfrac{-3+1}{2}=-1

x_{2}=\dfrac{-3-1}{2}=-2

Схематически график изображен на рис. 3.

у ≤ 0  при x ∈ [- 2; - 1]

ответ: 4) Решением неравенства является закрытый промежуток.

d)

- x² + 4 < 0         |  · (- 1)

x² - 4 > 0

Рассмотрим функцию у = x² - 4.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² - 4 = 0

x² = 4

x = ± 2

Схематически график изображен на рис. 4.

у > 0  при x ∈ (- ∞; - 2) ∪ (2; + ∞)

ответ: 6) Решением неравенства является объединение двух промежутков.

___________________________

2.

(x - a)(2x - 1)(x + b) > 0

x ∈(- 4; 1/2) ∪ (5; + ∞)

Решение неравенства показано на рис. 5.

Найдем нули функции у = (x - a)(2x - 1)(x + b).

(x - a)(2x - 1)(x + b) = 0

(x - a) = 0   или   (2x - 1) = 0    или   (x + b) = 0

x = a                      x = 1/2                  x = - b

Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит

\left\{ \begin{array}{ll}a=-4\\-b=5\end{array}  или   \left\{ \begin{array}{ll}a=5\\-b=-4\end{array}

\left\{ \begin{array}{ll}a=-4\\b=-5\end{array}  или   \left\{ \begin{array}{ll}a=5\\b=4\end{array}

ответ: a = - 4, b = - 5  или  a = 5, b = 4.


1)укажите соответствующий вывод для каждого неравенства.обоснуйте свой ответ​
4,6(62 оценок)
Ответ:
Mished
Mished
22.02.2021
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел. 

Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1. 

Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел. 

Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью. 

Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж
4,4(47 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ