М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maltsevaalbina2006
maltsevaalbina2006
26.02.2023 01:34 •  Алгебра

Решить логарифмическое уравнение: 1/2lg(3x+1)=lg(x-1)+lg 1

👇
Ответ:
ксения1376
ксения1376
26.02.2023
Если что непонятно, пиши)
Решить логарифмическое уравнение: 1/2lg(3x+1)=lg(x-1)+lg 1
4,8(28 оценок)
Открыть все ответы
Ответ:
arrrtem
arrrtem
26.02.2023
1) 1) найдите значение производной функции  y=cosx-2sinx в точке Xo =3π/2. 
 y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) =  - sin(3π/2) -2cos(3π/2)  = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3 
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5  =  3(x +5/3)(x -1) .
y '      +                                     -                         +   
- 5/3 max  1  min

3 )Решите уравнение  -2sin²x-cosx+1=0
 Укажите корни, принадлежащие отрезку          П    ?            

-2sin²x-cosx+1=0 ;  x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
 
производим замену переменной  t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.

[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k  , k∈Z .

ответ :   2π/3 .
4,7(68 оценок)
Ответ:
tsukhanova65
tsukhanova65
26.02.2023

(см. объяснение)

Объяснение:

\left(5+\dfrac{3}{\sin^2x}\right)\left(2-\sin^6x\right)=7+\cos2y

Наименьшее значение, которое может принимать левая часть рано 8.

Наибольшее значение, которое может принимать правая часть равно 8.

Значит исходное равенство становится верным, если имеем 8=8.

Тогда перейдем к системе уравнений:

\left\{\begin{array}{c}\left(5+\dfrac{3}{\sin^2x}\right)\left(2-\sin^6x\right)=8\\7+\cos2y=8\end{array}\right;

Понятно, что вторая ее строчка решается несложно:

7+\cos2y=8\\\cos2y=1\\y=k\pi,\;k\in \mathbb{Z}

Поработаем теперь с первой:

\left(5+\dfrac{3}{\sin^2x}\right)\left(2-\sin^6x\right)=8

Введем замену вида t=\sin^2x,\;0\le t\le 1.

Тогда уравнение выше можно переписать:

5t^4+3t^3-2t-6=0\\(t-1)(5t^3+8t^2+8t+6)=0

Один из корней очевиден и равен t=1.

Понятно, что при t\ge0 уравнение 5t^3+8t^2+8t+6=0 не имеет корней.

Выполним теперь обратную замену:

\sin^2x=1\\\cos2x=-1\\\\x=\dfrac{\pi}{2}+n\pi,\;n\in\mathbb{Z}

Тогда ответом будет:

\left\{\begin{array}{c}x=\dfrac{\pi}{2}+n\pi,\;n\in\mathbb{Z}\\y=k\pi,\;k\in\mathbb{Z}\end{array}\right;

Задание выполнено!

4,5(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ