М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
evaklchn
evaklchn
24.11.2022 06:58 •  Алгебра

При каких значениях параметра (p) (b) уравнение имеет два различных действительных корня? 1)4x^2+p=0 2)bx^2-5x+1/4b=0 при каких значениях параметра (t) (a) уравнение имеет ровно один корень (два равных корня)? 3)16x^2+t=0 4)x^2+4x+a-3=0 при каких значениях параметра p уравнение не имеет действительных корней 5)x^2+5x+2p=0 при каком положительном значении a функция имеет наибольшее значение, равное 15? 6)y= -2x^2+4ax+7 при каких значениях параметра t уравнение имеет единственный корень? 7) (t+1)x^2+tx-1=0

👇
Ответ:
Дзера1111
Дзера1111
24.11.2022

1)Корни определяются выражением: Х=корень (-р/4) .

При р=0, один корень Х=0.

При р>0 действительных корней нет. Оба мнимые.

При р<0 два действительных корня, одинаковых по модулю, но разных знаков.

4,8(42 оценок)
Открыть все ответы
Ответ:
saitovdamir20Damit
saitovdamir20Damit
24.11.2022

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,6(70 оценок)
Ответ:
милка326
милка326
24.11.2022

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,5(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ