М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
adilesha
adilesha
25.02.2021 01:12 •  Алгебра

При паралельному перенесенні точка а(4; 1) переходить у точку в(2; 7).у яку точку перейде при паралельному перенесенні точка с(-4; 2)

👇
Открыть все ответы
Ответ:
yaroslavat05
yaroslavat05
25.02.2021
Прощу прощения за задержку.
Разложить на множители, это означает упростить данное выражение. 
В данном выражении, мы можем увидеть общие множители abc .
Можно конечно разложить так:

abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже.
Поэтому не имеет смысла несколько раз упрощать и упрощать.
Поступаем так:
Находим минимальную степень а, b и с.
И получаем, что можно упростить так:
a^2b^2c^3(27ac^2-36b^2)
Можем так же заметить что 27 и 36 делятся на 9.
А значит имеем право упростить еще :
(9a^2b^2c^3)(3ac^2-4b^2)
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)

Если что то не понятно, задайте вопрос в комментарии :)
4,7(67 оценок)
Ответ:
Пакмен007
Пакмен007
25.02.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ