I hope this helps you
Наверняка существует и куда более простое и рациональное решение. Но я пока что нашёл такое. Для начала пусть есть 12 кубиков двух цветов - по 6 кубиков каждого цвета (для определённости пускай это будут 6 синих, и 6 красных), и пусть из них выстроена башня. Тогда для каждой такой башни наверх можно положить либо синий, либо красный кубик, и тогда построение башни тут же заканчивается: ведь по условию Коля заканчивает строить башню сразу же, как только в ней оказываются 7 кубиков одного цвета. Посчитаем, сколько таких башен существует. Если бы все кубики были разноцветными, то их было бы 12! Но в башне есть 6 синих кубиков и 6 красных кубиков, так что перестановка любой пары синих кубиков не даёт нам новую башню. 6 синих кубиков мы можем переставить и столько же для красных. Следовательно, общее число башен из 12 кубиков надо разделить ещё на 6!, а потом ещё раз на 6!. Получится 12! / (6! * 6!). И поверх каждой такой башни можно сверху положить либо синий, либо красный кубик - всего 2 комбинации, так что всего башен из 13 кубиков получается 2*12! / (6! * 6!) Теперь пусть есть башня из 6 синих кубиков и 5 красных кубиков. Если мы положим сверху синий кубик, то башня тут же заканчивается. Аналогично, когда есть башня из 5 синих кубиков и 6 красных, то она заканчивается, как только сверху оказывается ещё один красный кубик. Получается таким образом башня из 11 кубиков и ещё кубик сверху - и так 2 раза. Аналогично рассуждая, количество таких башен равно 11! / (6! * 5!), если синих кубиков 6, а красных 5 и столько же - наоборот. Всего: 2*11! / (6! * 5!) Далее, аналогично, для общего количества башен из 6 кубиков одного цвета и 4 кубиков другого всего есть вариантов 2*10! / (6! * 4!) (10! / (6! * 4!) для 6 кубиков синего цвета и 4 красного и столько же для случая наоборот). Для сочетания 6 - 3 (6 кубиков одного цвета и 3 другого) есть 2*9! / (6!*3!) вариантов. Для сочетания 6-2 есть 2*8! / (6! * 2!) вариантов Для сочетания 6-1 есть 2*7! / (6! * 1!) вариантов. И (формально продолжая закономерность), для сочетания 6-0 (все кубики одного цвета есть 2*6! / (6! * 0!) - всего 2 варианта (всего 7 кубиков, и все либо синие, либо красные). Остаётся только всё это сложить. Вынося общий множитель за скобку, получим: (2 / 6!) * (12! / 6! + 11! / 5! + 10! / 4! + 9! / 3! + 8! / 2! + 7! / 1! + 6! / 0!) - таково общее количество всевозможных башен, которые может построить Коля. Считаем: (2 / (1*2*3*4*5*6)) * (12*11*10*9*8*7 + 11*10*9*8*7*6 + 10*9*8*7*6*5 + 9*8*7*6*5*4 + 8*7*6*5*4*3 + 7*6*5*4*3*2 + 6*5*4*3*2*1) = (2 / (1*2*3*4*5*6)) * (7 * (12*11*10*9*8 + 11*10*9*8*6 + 10*9*8*6*5 + 9*8*6*5*4 + 8*6*5*4*3 + 6*5*4*3*2) + 1) Производим сокращения, не вычисляя эти произведения: 2 * (7 * (132 + 66 + 30 + 12 + 4 + 1) + 1) = 2 * (7 * 245 + 1) = 2 * (1715 + 1) = 2 * 1716 = 3432. Итого, 3432 различные башни.
Объяснение:ой:)
task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.
(2n^2-13n-45) /(3n-27) = (2n + 5)(n - 9) /3(n-9) = (2n+5)/3
разложим квадратный многочлен
D=13^2 - 4*(-45)*2 = 529 = 23^2
n12=(13+-23)/4 = 9 -5/2
------------------------------
(2n+5)/3 делится на цело
2n+5 кратно 3
n = .... 2 5 8
n = 3k - 1 k∈N