М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nasteckay
Nasteckay
28.07.2020 09:45 •  Алгебра

Найдите наибольшее и наименьшее из чисел: 1)5/6, 8/9, 10/14, 7/8 2) 217/300, 7/8, 47/60, 17/20

👇
Ответ:
Katyastudio
Katyastudio
28.07.2020

1)1(самое большое)-8/9      2-7/8       3-5/6            4(наименьшее)-10/14

2)1(самое большое)-7/8     2-17/20         3-47/60          4(наименьшее)-217/300

4,5(24 оценок)
Открыть все ответы
Ответ:
ученик6В1
ученик6В1
28.07.2020
Т.к. sin(x) - непрерывная функция, она интегрируема, и можно выбирать любое разбиение с любыми точками на нем. Разобьем [a,b] на n равных частей и возьмем значения функции в левых точках получившихся отрезков:
∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1

Далее преобразуем слагаемые в разности косинусов:
sin(a + k*(b-a)/n) = sin(a + k*(b-a)/n) * sin( (b-a)/2n ) / sin( (b-a)/2n ) = 1/(2sin((b-a)/2n)) * [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)]

Здесь были применены формулы
cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y))
Где x = a + k*(b-a)/n, y = (b-a)/2n

y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.

Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду
(b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1

Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.

∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)] = cos(a - 1/2 (b-a)/n) - cos(a + (n - 1/2)*(b-a)/n)

При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)

Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1

Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)
4,5(61 оценок)
Ответ:
tasyasoloveva24
tasyasoloveva24
28.07.2020
Пусть b1,b2,b3 члены геометрической прогрессии и a1,a4,a25 соответственно арифметической, из условия следует что b1+b2+b3=114. Из свойств арифм прогрессии, приравнивая соответствующие члены перепишем их как b1=a1, b2=a1+3d, b3=a1+24d суммируя получаем b1+b2+b3=3a1+27d=114 откуда a1+9d=38, выразим отсюда a1=38-9d так как b2/b1=b3/b2 или что тоже самое (a1+3d)/a1=(a1+24d)/(a1+3d) подставляя в уравнение, выражение a1=38-9d получаем (38-6d)/(38-9d)=(38+15d)/(38-6d) или (38-6d)(38-6d)=(38+15d)(38-9d)   18*38*d=171d^2 откуда d=0,d=4 при d=0 ответ b1=b2=b3=38 , при d=4, a1=2 получаем b1=a1=2, b2=a4=14, b3=a25=98. 
4,8(91 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ