По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
task/29945456
Представить в виде произведения :
* * * cosα= cos(2*α/2)=cos²(α/2) - sin²(α/2) =2cos²(α/2) - 1 ⇒cos²(α/2)=(1+cosα)/2 * * *
* * * cosα= cos(2*α/2)=cos²(α/2)- sin²(α/2) =1 -2sin²(α/2) ⇒sin²(α/2)=(1+cosα)/2 * * *
1) 1+ cos6α =2cos²3α * * * 2cos3α* cos3α * * *
2) 1 - cos(α /4) =2sin²(α/8)
3) 1+cos100° =2cos²50°
4) 1 + cos(5α/2) =2cos²(5α/4)
5) 1 - sin(α/2) = 1 - cos(π/2 - α/2) =2sin²( (π/2 - α/2) /2 ) = 2sin² ( π/4 - α/4 ) .
6) 1+ sin(π/10) = 1 +cos(π/2 - π/10 ) = 1+cos(2π/5) =2cos² (π/5) .
2. Понизить степень выражения :
1) cos² (α/2 +φ) = ( 1+cos2(α/2 +φ) ) / 2 = ( 1+cos(α +2φ) ) / 2
2) sin² (π/10 - β) =( 1 -cos2(π/10 - β) ) / 2 = ( 1 -cos(π/5 - 2β) ) / 2