а) Соединим А с точкой М АМ - ортогональная проекция КМ, KM перпендикулярна BC, поэтому по теореме о трех перпендикулярах АМ перпендикулярна ВС Рассмотрим треугольника АВМ и АМС: они прямоугольные, ВМ=МС, поэтому они равны по двум катетам. Отсюда следует, что АВ=АС б) прямая ВС перпендикулярна КМ и АМ - двум пересекающимся прямым плоскости АКМ,поэтому перпендикулярна и самой пл-ти. Плоскость (KBC) проходит через перпендикуляр к плоскости (КАМ) => (KBC) перпендикулярна пл-ти (KAM) в) Найти площадь ABC,если угол BKC=60 градусов, BC=6 см, KA= 3 корня из 2 Рассмотрим треугольникb КВМ и КМС: они прямоугольные (KM перпендикулярна BC), ВМ=МС, поэтому они равны по двум катетам. Отcюда ВК=СК, а тогда с учетом угла в 60 градусов треугольник ВКС равносторонний и ВК=СК=6. ВМ=3 Тогда легко найти КМ Из треугольника АКМ по теореме Пифагора Находим АМ Тогда площадь треугольника АВС =(1/2)ВС*АМ
Точка А переходит в точку С по одной окружности, а точка В в точку Д по другой окружности, но чтобы это происходило одновременно, то есть отрезок АВ переходил в СД, окружности должны быть концентрическими (иметь общий центр). Точки А и С лежат на одной окружности, значит АС - её хорда. Одновременно ВД - хорда другой окружности. Из школьного курса известно, что диаметр, проведённый к хорде, делит её пополам, обратным следствием чего является то, что срединный перпендикуляр, восстановленный к хорде, проходит через центр окружности. Восстановив срединные перпендикуляры к хордам АС и ВД получим точку их пересечения. Это и будет центр двух окружностей или центр поворота.
PS Надеюсь как построить срединный перпендикуляр расписывать не нужно.
О - центр окр.
T - т.кас.
AO=sqrt(R^2+AT^2)=sqrt(25+24)=7
искомое расстояние AO-R=2