Нужный график --синяя линия, график функции модуль синуса (красный цвет пунктиром) получается из графика синуса (тоже пунктирная линия) отображением "вверх" нижней части графика --симметрично относительно оси ОХ (т.к. значения функции не могут быть отрицательными))) при сложении получится, что будут участки, на которых будут складываться противоположные значения (т.е. их сумма =нулю) и будут участки, на которых будут складываться равные значения, т.е. обычные значения синуса удвоятся))) от нуля до пи будет кривая как у синусоиды, от пи до 2*пи будет прямая линия... а дальше все повторяется)))
Немножко приглядевшись, можно заметить, что система состоит из линейных уравнений с двумя переменными. Далее вспоминаем: уравнение вида ax + by + c = 0 задаёт на координатной плоскости ПРЯМУЮ. Таким образом, у нас известны уравнения двух прямых. Прямые могут либо пересекаться, либо быть параллельными, либо совпадать. Если прямые пересекаются, то система имеет единственное решение. Если прямые параллельны, то система не имеет решений вовсе, так как нет точек пересечения прямых. Если же прямые совпадают, то, как нетрудно сообразить, система имеет бесконечно много решений. Этот случай нас и интересует. Чтобы прямые совпадали, необходимо и достаточно, чтобы соответствующие коэффициенты были пропорциональными. Иначе говоря, если даны две прямые ax + by + c = 0 и a1x + b1y + c1 = 0, то они совпадают тогда, когда a/a1 = b/b1 = c/c1 Запишем это условие для нашей системы. 3/6 = (a-1)/(-5) = 1/2 3/6 = 1/2 выполняется, значит, необходимо, чтобы (a-1)/(-5) = 1/2 Отсюда ищем искомые значения параметра. a-1 = -5/2 a = -1.5