Допустим, что мотоциклист ехал в город x часов, а велосипедист - y часов. тогда можно составить систему уравнений: (немного о втором выражении: так как и мотоциклист и велосипедист ехали одновременно, то если мы вычтем из всего пути ту часть пути, которую уже проехал мотоциклист к тому моменту, как они встретились, то получим ту часть пути, которую проехал велосипедист. а выражаем мы эту часть через время, а именно ищем отношение 1 часа ко всему времени.) теперь осталось решить эту систему уравнений. во втором уравнении вместо y подставляем x + 2 и получаем уравнение с одной неизвестной (х), а затем решаем его:чтобы эта дробь была равна нулю, надо, чтобы числитель был равен нулю, то есть: 3x(x + 2) - 4(x + 2) - 4x = 0 3х² + 6х - 4х - 8 - 4х = 0 3х² - 2х - 8 = 0d = 2² + 4 * 8 * 3 = 4 + 96 = 100 √d = 10 нам нужен только положительный корень, так как время не может быть отрицательным.x = 2 (ч.) - ехал мотоциклист, а велесипедист тогда ехал y = x + 2 = 2 + 2 = 4 (ч.) ответ: 4 часа.
1) 2√3 < 3√2
√3≈1,73; √2≈1,41; 2*1,73=3,46; 3*1,41=4,23
2) 2√5 < 3√2
√5≈2,24; √2≈1,73; 2*2,24=4,48; 3*1,73=5,19
или так:
3) √23 < 2√6
√23≈4,8; 2√6=√24≈4,9
4) 2/3√72 < 13√2/3
(2/3)*8,5≈5,6; √(2/3)≈1,23; 13*1,23=15,99