Докажите , что при любом значении а верно неравенство 1) 3(а+1)+а-4(2+а)< 02) (7а-1)(7а+1)< 49а^23) 1+2а^4 ≧ а^2+2адокажите неравенство1)х^2+2у^2+2ху+6у+10>
Пусть пешеход двигался со скоростью Х километров в час. Тогда скорость велосипедиста была Х+11 км/ч. За полчаса форы, которая была у пешехода, он успел пройти 0,5*Х км. Дальше до момента встречи велосипедист и пешеход двигались равное количество времени - положим, У часов. За это время велосипедист проехал (Х+11)*У км, а пешеход Х*У км. При этом общий путь пешехода составил 5 км, а путь велосипедиста - 13-5=8 км. Получаем систему из двух уравнений. Отрицательный корень противоречит смыслу задачи - отбрасываем. Следовательно, пешеход двигался со скоростью 5 км/ч, а велосипедист - 5+11=16 км/ч. Проверка. За первые полчаса пешеход км. Далее ему осталось пройти до точки встречи еще 2.5 км - и он их тоже за полчаса. В то же время за эти вторые полчаса велосипедист проехал 16/2=8 км - ровно то расстояние, что отделяло его от точки встречи. ответ: Велосипедист двигался со скоростью 16 км/ч.
Пусть пешеход двигался со скоростью Х километров в час. Тогда скорость велосипедиста была Х+11 км/ч. За полчаса форы, которая была у пешехода, он успел пройти 0,5*Х км. Дальше до момента встречи велосипедист и пешеход двигались равное количество времени - положим, У часов. За это время велосипедист проехал (Х+11)*У км, а пешеход Х*У км. При этом общий путь пешехода составил 5 км, а путь велосипедиста - 13-5=8 км. Получаем систему из двух уравнений. Отрицательный корень противоречит смыслу задачи - отбрасываем. Следовательно, пешеход двигался со скоростью 5 км/ч, а велосипедист - 5+11=16 км/ч. Проверка. За первые полчаса пешеход км. Далее ему осталось пройти до точки встречи еще 2.5 км - и он их тоже за полчаса. В то же время за эти вторые полчаса велосипедист проехал 16/2=8 км - ровно то расстояние, что отделяло его от точки встречи. ответ: Велосипедист двигался со скоростью 16 км/ч.
Могу только с первым а+1) + а - 4(2 + а)<0 = 3а + 3 + а - 8 - 4а < 0 = 0 + 3 - 8< 0 = 0 - 5 < 0 = -5 < 0