Решение системы уравнений (5; 8)
Объяснение:
Решить систему уравнений методом сложения:
(х+3)/2 - (у-2)/3 =2
(х-1)/4 + (у+1)/3 =4
Умножить первое уравнение на 6, второе на 12, чтобы избавиться от дроби:
3(х+3)-2(у-2)=12
3(х-1)+4(у+1)=48
Раскрыть скобки:
3х+9-2у+4=12
3х-3+4у+4=48
Привести подобные члены:
3х-2у= -1
3х+4у=47
Умножить первое уравнение на -1, чтобы применить метод сложения:
-3х+2у=1
3х+4у=47
Складываем уравнения:
-3х+3х+2у+4у=1+47
6у=48
у=8
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
3х-2у= -1
3х= -1+2у
3х= -1+2*8
3х=15
х=5
Решение системы уравнений (5; 8)
№1 а) 5x-8.5=0 б)8x-7.5=6x+1.5
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально