Так как в уравнении есть квадратные корни, то запишем ОДЗ:
Также заметим, что в левой части записано произведение двух неотрицательных выражений. Значит, правая часть уравнения также неотрицательна:
Таким образом, при уравнение не имеет корней.
Предположим, что . Тогда:
Проверим, удовлетворяют ли найденные корни ОДЗ.
Для первого корня получим:
Однако, квадратный корень не может принимать отрицательных значений. Значит, рассматриваемое выражение не является корнем уравнения ни при каких значениях параметра .
Для второго корня получим:
Последнее условие выполняется при любых значениях параметра . Но как отмечалось ранее, уравнение может иметь корни только при
. Значит, данное выражение является корнем уравнения при
.
при : нет корней,
при :
Объяснение:
б)(х²-2х+1)/(х-3)+(х+1)/(3-х)=4
(х+1)/(3-х)–(2х-х²-1)/(3-х)=4
(х-1-2х+х²+1)/(3-х)=4
(х²-х+2)/(3-х)=4
х²-х+2=4(3-х)
х²-х+2=12-4х
х²-х+4х+2-12=0
х²+3х-10=0
Д=9-4×(-10)=9+40=49
х1= (-3-7)/2= -10/2= -5
х2= (-3+7)/2=4/2=2
ОТВЕТ: х1= -5; х2=2г)36/(х²-12х)–3/(х-12)=3
36/(х(х-12))–3/(х-12)=3
(36–3х)/(х(х-12))=3
(36-3х)/(х²-12х)=3
3(х²-12х)=36-3х
3х²-36х-36+3х=0
3х²-33х-36=0 |÷3
х²-11х-12=0
Д=121-4×(-12)=121+48=169
х1=(11-13)/2= -2/2= -1
х2=(11+13)/2=24/2=12
ответ: х1= -1; х2=12а)
(х²-2х)/(х-1)–(2х-1)/(1-х)=3
(х²-2х)/(х-1)+(1-2х)/(х-1)=3
(х²-2х+1-2х)/(х-1)=3
(х²-4х+1)/(х-1)=3
х²-4х+1=3(х-1)
х²-4х+1=3х-3
х²-4х+1-3х+3=0
х²-7х+4=0
Д=49-4×4=49-16=33
х1=(7-√33)/2
х2=(7+√33)/2
ответ: х1=(7-√33)/2; х2=(7+√33)/2
Решение задания приложено