X^2+8x+2больше-5 x^2+8x+7больше0 Для нахождения корней данную функцию приравняем к 0 x^2+8x+7=0 D/4=16-7=9 x1=-4+3= -1 x2= -4-3= -7 чертим числовую прямую и отмечаем на ней две точки -1 и -7 этим самым разбиваем числовую прямую на три отрезка(-бесконечность;-7);(-7;-1);(-1;бесконечность). Теперь находим знакопостоянство. Для этого берем любое значение -1 до +бесконечности и подставим в уравнение. Возьмем 0 теперь подставим 0+0+7=7 больше 0 значит положительное значение принимает, теперь берем интервал -7;-1. Возьмем -6, 36-48+7= -5 отрицательное значение и -бесконечность;-7 возьмем -8, 64-64+7=7 положительное. У нас неравенство больше 0, поэтому ищем интервалы с положительным значением, это (-бесконечность;-7)u(-1;бесконечность) То же самое и со вторым значением x^2+8x+2меньше2 x^2+8xменьше0 x^2+8x=0 x(x+8)=0 x1=0 x2= -8 Разбиваем числовую прямую и получаем ответ (-8;0)
Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.
если число закачивается на 0, то в квадрате оно заканчивается на 0 если число закачивается на 1, то в квадрате оно заканчивается на 1 если число закачивается на 2, то в квадрате оно заканчивается на 4 если число закачивается на 3, то в квадрате оно заканчивается на 9 если число закачивается на 4, то в квадрате оно заканчивается на 6 если число закачивается на 5, то в квадрате оно заканчивается на 5 если число закачивается на 6, то в квадрате оно заканчивается на 6 если число закачивается на 7, то в квадрате оно заканчивается на 9 если число закачивается на 8, то в квадрате оно заканчивается на 4 если число закачивается на 9, то в квадрате оно заканчивается на 1
x=8,
x=12