(10+2)*(10-9)-10*2
1)10+2=12
2)10-9=1
3)12*1=12
4)10*2=20
5)12-20=-8
По всей видимости, речь идёт о функции у=-5/(1+х^2)
Если это так, то обратим внимание на то, что знаменатель всегда положителен, поэтому значение функции всегда отрицательное.
Далее, вообще верхний предел этой функции равен 0, при х-> +-бесконечности, поэтому максимальное ЦЕЛОЕ значение, которое может принять функция, равно -1.
Вот в принципе и всё, однако для строгости нужно ещё доказать, что она где-то примет это значение. Это просто, так как мин. значение функции -5 , это очевидно, если глянуть на знаменатель. Поэтому область значений функции [-5;0). -1 входит в этот интервал. Всё.
Ну и последнее. В задаче НЕ ТРЕБУЕТСЯ определить при каком значении х достигается указанный максимум и в общем случае это бывает очень трудно, даже невозможно аналитическими методами сделать. У нас же очень простая функция, поэтому в качестве бонуса определим этот х.
-5/(1+х^2)=-1
x^2 = 4, x=+-2
То есть указанного целочисленного максимума функция принимает даже при двух разных значениях аргумента(хотя это было ясно с самого начала, так как функция чётная).
Вот теперь точно всё.
(t+2)⋅(t−9)−t2 = t2-9t+2t-18-t2 = -7t-18,
-7t-18, при t= -10
-7 ⋅ (-10) - 18 = 70-18= 52
ответ: 52