Умножим знаменатель дроби на 5: 5*(n^2+2n+2)=5n^2+10n+10. Преобразуем числитель дроби: n^3+5n^2+8n+17 = n^3+5n^2+10n-2n+10+7 = 5n^2+10n+10+n^3-2n+7 = 5*(n^2+2n+2)+n^3-2n+7. Отсюда видно, что для того чтобы исходная дробь была целым числом должно выполняться условие n^3-2n+7 = k*(n^2+2n+2), где k - целое. Но, это невозможно ни при каких n. При n=0 получаем 7/2 - дробное число. Заметим, что n^3-2n+7 и n^2+2n+2 имеют разную четность, поэтому если n = 2k, где k - целое, n^3-2n+7 = 8k^3-4k+7 является нечетным числом, тогда как n^2+2n+2 = 4k^2+4k+2 число четное. Наоборот, если n = 2k+1, где k - целое, n^3-2n+7 = (2k+1)^3-2(2k+1)+7=8k^3+12k^2+6k+1-4k-2+7 = 8k^3+12k^2+2k+6 четное число, а n^2+2n+2 = (2k+1)^2+2(2k+1)+2 = 4k^2+4k+1+4k+2+2=4k^2+8k+5 число нечетное. А такие числа не могут делиться друг на друга нацело. Т. о. n^3-2n+7 не делится нацело на n^2+2n+2 ни при каких целых n.
ответ: Ни при каких целых n.
Числа х и у.
х+у=19, х²+у²=181. Решаем подстановкой. у=19-х, х²+(19-х)²=181
2х²-38х+180=0, х²-19х+90=0. х₁=10, х₂=9
у₁=9, у₂=10. Решение системы:(10;9) ,( 9;10)
ответ: числа 9 и 10.
Стороны х см и у см. 2х+2у=52, х*у=165. Решаем тоже подстановкой
х+у=26, у=26-х. х*(26-х)=165
-х²+26х-165=0. х₁=15, х₂=11
у₁=26-15=11, у₂=26-11=15. Решение системы(15;11), (11;15).
ответ: стороны равны 15 см и 11 см.