М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dimo558
Dimo558
08.04.2023 16:45 •  Алгебра

Докажите что значение выражения (3n + 1) (2n-1) + n + 7 делится на 6 для каждого целого значения n

👇
Ответ:
Natiman
Natiman
08.04.2023
6n^2-3n+2n-1+n+7
-3n, 2n і n скорочуються
6n^2+6
6(n^2+1)
з цього випливає, що яке б число не було n, воно все одно помножиться на 6, тобто воно також і поділиться на 6
4,8(92 оценок)
Открыть все ответы
Ответ:
sashaburov199
sashaburov199
08.04.2023
1)корень(5х+9) =2х.Надо возвести в квадрат обе части уравнения.
5х + 9 = 4х².
Получаем квадратное уравнение.
4х² - 5х - 9 = 0.
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-5)^2-4*4*(-9)=25-4*4*(-9)=25-16*(-9)=25-(-16*9)=25-(-144)=25+144=169;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√169-(-5))/(2*4)=(13-(-5))/(2*4)=(13+5)/(2*4)=18/(2*4)=18/8=2.25;
x_2=(-√169-(-5))/(2*4)=(-13-(-5))/(2*4)=(-13+5)/(2*4)=-8/(2*4)=-8/8=-1.
Второй (отрицательный) корень отбрасываем - в задании даётся положительное значение корня.
ответ: х = 18/8 = 9/4 = 2,25.

2)(1/7)степень7-x =49.
    Выражение (1/7)^(7-x) равносильно 7^(x-7) по свойству (1/а) = а^(-1).
Тогда  7^(x-7) = 7².
Отсюда х - 7 = 2
               х = 2 + 7 = 9.
ответ: х = 9.

3)lоg внизу5 ×(7-x)=2
 Логарифм - это показатель степени основания.
То есть 5² = 7 - х
Отсюда х = 7 - 25 = -18.
ответ: х = -18.
4,7(64 оценок)
Ответ:
Kuanova2005
Kuanova2005
08.04.2023
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,5(65 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ