Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
Даны вершины треугольника АВС на плоскости А (1;2)В (3;-1)С (-1;4
а) уравнение прямой АВ:
(х - 1)/2 = (у - 2)/(-3) это каноническое уравнение.
Оно же в общем виде 3х + 2у - 7 = 0.
С угловым коэффициентом у = (-3/2)х + (7/2).
б) уравнение высоты СD опущенной на АВ.
Угловой коэффициент к(СД) = -1/к(АВ) = -1/(-3/2) = 2/3.
Уравнение СД: у = (2/3)х + в. Подставим координаты точки С.
4 = (2/3)*(-1) + в. Отсюда в = 4 + (2/3) = 14/3.
СД: у = (2/3)х + (14/3) или 2х - 3у + 14 = 0.
в) уравнение медианы ВЕ .
Точка Е как середина АС: Е(0; 3).
Уравнение ВЕ: (х - 3)/(-3) = (у + 1)/4 или 4х + 3у - 9 = 0.
г) точку пересечения СD и ВЕ .
Решим систему 2х - 3у + 14 = 0, умн(-2) -4х + 6 у - 28 = 0
4х + 3у - 9 = 0 4х + 3у - 9 = 0.
9у - 37 = 0
у = 37/9.
х = (3*(37/9) - 14) /2 = (-5/6).
Точка О((-5/6); (37/9).
д) уравнение прямой проходящей через вершину С параллельно АВ .
Угловой коэффициент равен к(АВ) = (-3/2). Точку С:
4 = (-3/2)*(-1)+ в, в = 4 - (3/2) = 5/2.
Уравнение у = (-3/2)х + (5/2) или 3х + 2у - 5 = 0.