2)Пусть х - число роз в первом букете первоначально, тогда во втором букете их было первоначально - 4х. К первому букету добавили 15 роз, то количество роз в первом букете стало х+15. Ко второму добавили 3 розы, тогда во втором букете их стало 4х+3. Т.к. в обоих букетах роз стало поровну, значит букеты разрешается приравнять:
х+15=4х+3
х=4 (розы) - было в первом букете первоначально
4х=4*4=16(роз) - было во втором букете первоначально
Точки максимума, минимума - это точки экстремума функции. Это точки, в которых производная = 0 и при переходе через эти точки меняет знак. Так что ищем производную, приравниваем к 0 и смотрим смнеу знака. f(x) = x³ - 3x² f'(x) = 3x² -6x 3x² -6x = 0 x(3x -6) = 0 x = 0 или 3х -6 = 0 х = 2 -∞ 0 2 +∞ + - + это знаки f'(x) = 3x² -6x возрастание убывание возрастание ответ: х = 0 это точка максимума х = 2 это точка минимума.
2)Пусть х - число роз в первом букете первоначально, тогда во втором букете их было первоначально - 4х. К первому букету добавили 15 роз, то количество роз в первом букете стало х+15. Ко второму добавили 3 розы, тогда во втором букете их стало 4х+3. Т.к. в обоих букетах роз стало поровну, значит букеты разрешается приравнять:
х+15=4х+3
х=4 (розы) - было в первом букете первоначально
4х=4*4=16(роз) - было во втором букете первоначально
ответ:4, 16.
3)
х - одно число, y- другое число
Составим систему:
x+y=138
2/9x=80/100y
x+y=138
2/9x=4/5y
x+y=138
5x=18y
x=138-y
5*(138-y)=18y
x=138-y
690=23y
x=138-y=138-30=108
y=30
ответ:30, 108.