Объяснение:
№1
В фирме такси в данный момент свободно 40 машин: 17 чёрных, 15 жёлтых и 8 зелёных.
По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику.
Найдите вероятность того, что к нему приедет жёлтое такси.
Решение: (ответить на вопросы)
1) Найти количество всех возможных вариантов (количество всех свободных машин) 40
2) Определить количество благоприятных вариантов ( количество жёлтых такси) 15
3) Найдите вероятность благоприятных вариантов ( применить формулу вероятности, результат перевести в десятичную дробь)
Формула
Вероятность = число благоприятных вариантов / число возможных вариантов
15/40= 0,375
4) ответ. 0,375
№2
В среднем из 300 садовых насосов, поступивших в продажу, 60 подтекает.
А) Найдите вероятность того, что случайно выбранный для контроля насос подтекает.
60/300 =0,2
Б) Найдите вероятность того, что случайно выбранный для контроля насос будет исправный.
1-0,2=0.8
или можно по другому решить
300-60=240 насосов исправных
240/300=0.8
ответ: один ученик побывал и в кино, и в театре, и в цирке.
Пошаговое объяснение:
РЕШЕНИЕ. Пусть х – количество учащихся, которые побывали и в кино, и в театре, и в цирке. Тогда (6-х) –количество учащихся, побывавших и в кино, и в театре; (10-х) - количество учащихся, побывавших и в кино, и в цирке; (4-х) - количество учащихся, побывавших и в цирке, и в театре. Известно, что в кино побывало 25 человек, найдём, сколько ребят посетило только кино:
25 – (6 – х) – (10 – х) –х = 25-6+х-10 +х-х=9+х
Аналогично найдём, сколько ребят посетило только театр:
11 -(6 – х) – (4 – х) – х =11-6+х-4+х-х=1+х
Аналогично найдём, сколько ребят посетило только цирк:
17 - (10 – х) - (4 – х) – х = 17-10+х – 4 +х –х=3+х
Т.к. двое учеников не посещали никакие увеселительные заведения, то количество активных ребят равно 36 - 2 = 34.
Составляем уравнение:
Х+4-х+10-х+6-х+9+х+1+х+3+х = 34
Х+33=34
Х=1 (уч) – посетил и кино, и театр, и цирк.