Какое наименьшее количество чисел нужно удалить из набора 10, 20, 30, 40, 50, 60, 70, 80, 90, чтобы произведение оставшихся было точным квадратом? напишите какие числа удаляются
Пусть скорость первого поезда x км в час тогда второго y км в час общий путь 5x+3y=500 так как оба числа делятся на два получается 50x+30y=500 10(5x+3y)=500 5x+3y=500 (1) x-y=10 ( или 30 или 20). (2) так как числа должны делиться на 10 ,то подходят только числа 10, 20, 30 если в варианте x-y=10 получается отрицательный ответ y-x=10 решаемых систему 1 и 2 и проверяемых все три варианта 5x+3y=500 3x-3y=30 8x=530 не подходит 8x=590 не подходит 8x=560 подходит x=70 подставляем в исходное уравнение получаем y=50 скорость первого 70 км в ч скорость второго 50 км в ч.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Решение : /////////////////////////////