Необходимо начертить вектор АВ=(2;4) . Начало вектора выбрать произвольно.
Координаты вектора - это проекции вектора на оси ОХ и ОУ. То есть вектор АВ проектируется на ось ОХ в отрезок , длина которого равна 2 единицам, а на ось ОУ - в отрезок, длина которого 4 единицы. Причём, так как координаты положительные, то направление от проекции начала вектора к проекции конца вектора такое же, как и у осей координат.
Если , например, за начало вектора возьмём точку А(2,1), то от точки А₁(2,0) , которая является проекцией точки А на ось ОХ, отложим вдоль оси ОХ отрезок длиной 2 единицы в направлении оси ОХ, попадём в точку В₁(4,0), которая будет проекцией точки В на ось ОХ. А₁В₁ - проекция вектора АВ на ось ОХ.
Аналогично, от точки А₂(0,1) отложим вдоль оси ОУ отрезок длиной 4 единицы, попадём в точку В₂(0,5) . А₂В₂ - проекция вектора АВ на ось ОУ.
Затем соединим точку А(2,1) с точкой В(4,5), получим искомый вектор АВ=(2,4).
в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН.
известно, что ВС = 6, пусть АН = ВН = х,
тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2
36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный.
угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора АС^2 = АН^2 + НС^2
4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6;
тогда Ас = 2х = 2 корня из 6
ответ: 2 корня из 6