Объяснение:
1/a) 6x-14-5x<=3x-12, x-3x<=14-12, -2x<=2, x>=-1
б) умножаем все на 8, 8x-2(x-3)+x-1 >16, 8x-2x+6+x-1>16,
7x>16-5, 7x>11, x>11/7
2) -2x-3x>-3-12, -5x>-15, x<3 u 7x-4x<=6+12, 3x<=18, x<=6,
ответ : (-Б; 3) Б -бесконечность
3a) x=12 или х=-12, б) 2х+3=7, 2х=4, х=2 или 2х+3= -7, 2х=-10, х=-5
в) 1-3х=37, -3х=36, х=-12 или 1-3х=-37, -3х=-38, х= 38/3=12 2/3
4a) здесь надо решить систему: 4x-1<9 и 4x-1> -9,
4x<10, x<10/4, x<2,5 и 4x>-8, x>-2, ответ: (-2; 2,5)
t² - 2t = 3
t² - 2t - 3 = 0
Решаем по теореме, обратной теореме Виета
{t1 + t2 = 2
{t1 * t2 = -3
t1 = -1
t2 = 3
x² - 2x - 5 = -1, или x² - 2x - 5 = 3
1) x² - 2x - 5 = -1
x² - 2x - 4 = 0
Решаем через дискриминант
D = b² - 4ac = (-2)² - 4 * (-4) = 20
x1 = (-b - √D) / (2a) = (2 - √20) / 2 = (2 - 2√5) / 2 = 1 - √5
x2 = (-b +√D) / (2a) = (2 + √20) / 2 = 1 + √5
2) x² - 2x - 5 = 3
x² - 2x - 8 = 0
{x1 + x2 = 2
{x1 * x2 = -8
x1 = -2
x2 = 4
ответ:
x1 = 1 - √5
x2 = 1 + √5
x3 = -2
x4 = 4