Надо воспользовать тем, что наименьший положительный период синуса и косинуса равен 2π, а тангенса и котангенса — π. Воспользоваться — значит представить исходную функцию, скажем, в виде f(sin kx), где f — монотонная функция (принимающая каждое своё значение только один раз) . Тогда период равен 2π/k. 1.42. Период равен 2π. 1.44. cos² 3x = (cos 6x + 1)/2, поэтому период равен 2π/6 = π/3. 1.46. lg |sin x| = lg √(sin² x) = ½ lg ((1 – cos 2x)/2), поэтому период равен 2π/2 = π. 1.48. sin^4 x + cos^4 x = (cos² x + sin² x)² – 2 sin² x cos² x = 1 – ½ sin² 2x = 1 – (1 – cos 4x)/4, период равен 2π/4 = π/2. 1.50. |cos(x/2)| = √(cos²(x/2)) = √((cos x + 1)/2), период равен 2π.
N = n*k+0,75*4*n= n* (k+3) Для начала мы знаем, что все обычные места (не откидные) заняты. Чтобы вычислить кол-во людей на них, надо умножить кол-во рядов (n) на кол-во кресел в каждом (K) Теперь откидные кресла. Так как осталось 25 % свободно,занято 100-25=75%. Чтобы проценты перевести в числовой эквивалент, надо 75 разделить на 100, получим 0,75 Всего откидных кресел 4 (в каждом ряду) умноженное на кол-во рядов, то есть на все те же N. Итого у нас занято откидных кресел 0,75*4*n Складываем зрителей на обычных и откидных креслах, выносим общий множитель (n) за скобки и производим умнижение известных чисел (0,75*4=3) В итоге получаем N = n* (k+3)
1.42. Период равен 2π.
1.44. cos² 3x = (cos 6x + 1)/2, поэтому период равен 2π/6 = π/3.
1.46. lg |sin x| = lg √(sin² x) = ½ lg ((1 – cos 2x)/2), поэтому период равен 2π/2 = π.
1.48. sin^4 x + cos^4 x = (cos² x + sin² x)² – 2 sin² x cos² x = 1 – ½ sin² 2x = 1 – (1 – cos 4x)/4, период равен 2π/4 = π/2.
1.50. |cos(x/2)| = √(cos²(x/2)) = √((cos x + 1)/2), период равен 2π.