На прямой взято 12 точек, а на параллельной ей прямой взято 4 точки(ек). вычисли, сколько существует различных треугольников, вершинами которых являются эти точки?
случай 1. пусть одна из вершин треугольника лежит на первой прямой, у которой 10 точек, а две другие - на второй прямой, у которой 6 точек.
первую вершину можно выбрать способами, а две другие - способами. по правилу
произведения, всего треугольников
случай 2. пусть одна вершина теперь лежит на второй прямой, а две другие - на первой прямой. тогда первую вершину можно взять способами, а две другие - способами. по правилу произведения, всего таких треугольников -
6*45=270
Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
ее формула S=m/n(то есть число благоприятных исходов делим на число всех исходов)
в итоге получается,что два орла выпадут с вероятность 2/3 , а решка с вероятностью1/3 2)Решение: Всего возможных комбинаций при вбрасывании двух кубиков: 6 * 6 = 36.
Из них благоприятные исходы можно перечислить: 1+6 6+1 2+5 5+2 3+4 4+3 Таким образом, всего благоприятных исходов 6. Вероятность найдем, как отношение числа 6 благоприятных исходов к числу всех возможных комбинаций 36. 6/36 = 0,16666… Округлим до сотых. ответ: 0, 17
треугольник задается своими тремя вершинами.
случай 1. пусть одна из вершин треугольника лежит на первой прямой, у которой 10 точек, а две другие - на второй прямой, у которой 6 точек.
первую вершину можно выбрать способами, а две другие - способами. по правилу
произведения, всего треугольников
случай 2. пусть одна вершина теперь лежит на второй прямой, а две другие - на первой прямой. тогда первую вершину можно взять способами, а две другие - способами. по правилу произведения, всего таких треугольников -
6*45=270
итак, искомое количество треугольников равно