В решении.
Объяснение:
Аквалангист ныряет в морскую пучину. Известно, что через t секунд после заныривания он находится на глубине g(t) = t^2-10t.
а) Определите, на какой глубине окажется аквалангист через 4 секунды после начала ныряния.
g(t) = t²-10t = 4²-10*4 = 16-40 = -24 (м) - на этой глубине.
б) Определите, в какие моменты времени (при каких значениях t) он будет находиться на глубине 9 метров.
-9 = t²-10t
t²-10t+9=0, квадратное уравнение, ищем корни:
D=b²-4ac =100-36=64 √D= 8
х₁=(-b-√D)/2a
х₁=(10-8)/2
х₁=2/2
х₁=1 (сек.).
х₂=(-b+√D)/2a
х₂=(10+8)/2
х₂=18/2
х₂=9 (сек.)
Записать первые три члена ряда
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Объяснение:sdg